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Comment on “Ising model on a small world network”
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In the recent study of the Ising model on a small world network biaR&i [Phys. Rev. E64, 057104
(2001)], a surprisingly small value of the critical expongst=0.0001 has been obtained for the temperature
dependence of the magnetization. We perform extensive Monte Carlo simulations of the same model and
conclude, via the standard finite-size scaling of various quantities, that the phase transition in the model is of
the mean-field nature, in contrast to the work bkd#ski, but in accordance with other existing studies.
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Pekalski [1] studied the Ising model on a small world
network constructed from a ring lattice. In the presence of a
finite fraction of additional long-range interactions, the
model was observed to undergo a phase transition at a finite =z
temperature, in agreement with other related stufes]. °
However, the exponems, describing the critical behavior of
the magnetization in the vicinity of the transition, was found
to be very small~0.0001, in contrast to the previous stud-
ies suggesting the mean-field nature of the transitibrd].

The small world network in Refl1] was constructed in a

slightly different way compared with the original model by

Watts and Strogatg5], under the additional constraint that

not more than one shortcut be allowed for each vertex in the ©
network. In this Comment we present results of extensive
Monte Carlo(MC) simulations of the same model as that in
Ref. [1], which reveal that the phase transition is described
by the mean-field exponenis=0, g=1/2, y=1, andv

=2 (see below for definitionsand thus conclude that the
additional constraint in the network construction does not
change the universality class of the transition.

For simplicity, we consider only the network where every
vertex has one shortcbr every spin has three couplings
which is identical to Plealski’'s network with the parameter
p=1 in Ref.[1]. We then perform extensive Monte Carlo
simulations of the Ising model described by the Hamiltonian
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FIG. 1. (a) Binder’s cumulantJy has a unique crossing point at
T.=1.81(2)(in units of J/kg). (b) The critical exponent=1.99 is
obtained from the least-squares fit to the form in E5j. (c) Spe-
cific heatC, (in units of kg) also has a crossing point &t

1)

whereJ is the coupling strengthr;(= = 1) is the Ising spin

on vertexi, and A; denotes the neighborhood of vertgx
including those vertices connected itoFor given network
sizeN at temperaturd (in units of J/kg), we have measured
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=1.822), suggestingxr=0. (d) From the similar expansion «,
nearT., v=2.02 is obtained(e) Finite-size scaling of the suscep-
tibility again determined .=1.82(2) with the critical exponeny
=1. (f) Finite-size scaling of the magnetizatipfm)] [see Eq(8)]
with 8=1/2 also leads to the crossing pointTai=1.841). In (a),

(c), (e), and(f), simulations have been performed with the tempera-
ture incrementA T=0.005 whereas the data fdi=200 have been
used for fitting in(b) and (d).
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various thermodynamic quantities such as Binder’s cumulanpoint of C, again yieldsT.=1.822), in accordance witf;
[7], the specific heat, and the susceptibility: obtained fromUy within numerical errors. The similar ex-
pansion ofC, then provides an alternative way of determin-

4 —
N=1- M (2) ing v_,ACU=Cv(T1)—Cv(T2)ocN1’”, leading to the estima-
3[(m?)]? tion »~2.0 in Fig. Xd).
’ ’ The divergence of the susceptibility wheR, is ap-
c :[<H )—(H)] &) proached from above is described by the critical exponent
v T2N ’ v:x~ (T—T¢) 7, which suggests the finite-size scaling form
-5 > Koo (4 X=N""g(T-ToN™), @

with m=|(1/N)=,0;|, where(---) and[- - -] represent the with the appropriate scaling functiog(x). Combined with
thermal averagétaken over 5000 MC steps after discarding v~ 2 found above, the finite-size scaling fol@ yields the
5000 MC steps for equilibration at each tempergtared the  value y=1 andT.=1.82(2) as shown in Fig.(&).
average over different network realizatiaiaken over 400— Finally, on the basis of the above observation, the critical
1200 different configurationsrespectively. exponentB for the magnetization is then determined from
Binder’'s cumulant in Eq(2), plotted for various sizes, the scaling form
yields a unique crossing point as a function of the tempera-
ture T, providing a convenient method to determine the criti-
cal temperatureT.. Figure 1a) shows that the resull,
=1.81(2) is obtained from the crossing point of Binder’s
cumulant forN=800. The critical exponent, describing the ~Which leads tol.=1.82(1) ands~1/2[see Fig. 1f)].
divergence of the correlation volume in such a way that We note that the obtained critical temperature appears to

~|T—T," [4], can be determined from the expansion ofbe higher by factor of 2 than that in RéfL]. The standard
Uy nearCT [6]', mean-field approximation applied to this model, where the
¢ [6]:

coordination number is 3, yield$,,-=3 [8]. Considering

[(m)]=N"B"h((T—ToN), (8)

AUNEUN(Tl)—UN(Tz)MN””_, (5) the infinite range of the interactions and the mean-field na-
ture of the transition, we believe that our estimatidp
where T, and T, (>T,) are chosen neaf.. Figure 1b) =1.82(2) (in units of J/kg) is more precise. In this respect,

results in the value~2.0, which, together with the hyper- it is interesting to note that also in ti€Y model on the small
world network a relatively large valu@./Ty~0.9 has
been estimatef4].

In summary, we have numerically studied the Ising model
on the small world network constructed in the identical way
as in Ref[1]. In contrast to Ref[1], we have obtained the

Cvzf((T—TC)Nl’;), ©6) stangard mean-fie!d critical exponents= 0,,8=.]:/2,y.= 1,
and »=2 and confirmed that the phase transition is of the
wheref(x) is an appropriate scaling function with the scal- mean-field nature, in agreement with other previous studies
ing variablex. As shown in Fig. Ic), the unique crossing [2-4].

scaling relationv=2— «, gives the critical exponent~0
for the specific hea€, .

With such a mean-field value, we write the finite-size
scaling in the form
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